Any algebraic variety in positive characteristic admits a projective model with an inseparable Gauss map

Satoru Fukasawa, Hajime Kaji

研究成果: Article査読

4 被引用数 (Scopus)

抄録

We determine the values attained by the rank of the Gauss map of a projective model for a fixed algebraic variety in positive characteristic p. In particular, it is shown that any variety in p > 0 has a projective model such that the differential of the Gauss map is identically zero. On the other hand, we prove that there exists a product of two or more projective spaces admitting an embedding into a projective space such that the differential of the Gauss map is identically zero if and only if p = 2.

本文言語English
ページ(範囲)297-300
ページ数4
ジャーナルJournal of Pure and Applied Algebra
214
3
DOI
出版ステータスPublished - 2010 3

ASJC Scopus subject areas

  • Algebra and Number Theory

フィンガープリント 「Any algebraic variety in positive characteristic admits a projective model with an inseparable Gauss map」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル