### 抄録

In recent publications dealing with nonlinear systems, nonlinearities existing in the systems under study have drawn much attention. Studies on the effects of nonlinearities in power systems are becoming an increasingly important part of the research on system stability. It is probable that heretofore undiscovered phenomena caused by the nonlinearities involved in load flow equations, generator swing equations and characteristics of control equipments and loads, etc., may be found. This paper presents a new Catastrophe Theory application to nonlinear power systems. Making use of the concept of Duffing's equation, it is shown that a Catastrophe Theory analogy can be used to interpret unstable phenomena caused by system nonlinearities from the viewpoint of oscillations. When considering system nonlinearities due to poor combinations of system parameters and periodic disturbances, there may exist the characteristic 'jumps' in system rates that correspond to slow (quasi-dynamic) changes of the frequencies of periodic disturbances. With this Catastrophe Theory approach, a system bifurcation set can be identified to assess the unstable phenomena of power systems.

元の言語 | English |
---|---|

ページ（範囲） | 40-48 |

ページ数 | 9 |

ジャーナル | Electrical Engineering in Japan (English translation of Denki Gakkai Ronbunshi) |

巻 | 115 |

発行部数 | 7 |

出版物ステータス | Published - 1995 12 1 |

### Fingerprint

### ASJC Scopus subject areas

- Electrical and Electronic Engineering

### これを引用

*Electrical Engineering in Japan (English translation of Denki Gakkai Ronbunshi)*,

*115*(7), 40-48.

**Application of catastrophe theory to power systems.** / Huang, Yu; Tsukao, Shigeyuki; Tamura, Yasuo; Iwamoto, Shinichi.

研究成果: Article

*Electrical Engineering in Japan (English translation of Denki Gakkai Ronbunshi)*, 巻. 115, 番号 7, pp. 40-48.

}

TY - JOUR

T1 - Application of catastrophe theory to power systems

AU - Huang, Yu

AU - Tsukao, Shigeyuki

AU - Tamura, Yasuo

AU - Iwamoto, Shinichi

PY - 1995/12/1

Y1 - 1995/12/1

N2 - In recent publications dealing with nonlinear systems, nonlinearities existing in the systems under study have drawn much attention. Studies on the effects of nonlinearities in power systems are becoming an increasingly important part of the research on system stability. It is probable that heretofore undiscovered phenomena caused by the nonlinearities involved in load flow equations, generator swing equations and characteristics of control equipments and loads, etc., may be found. This paper presents a new Catastrophe Theory application to nonlinear power systems. Making use of the concept of Duffing's equation, it is shown that a Catastrophe Theory analogy can be used to interpret unstable phenomena caused by system nonlinearities from the viewpoint of oscillations. When considering system nonlinearities due to poor combinations of system parameters and periodic disturbances, there may exist the characteristic 'jumps' in system rates that correspond to slow (quasi-dynamic) changes of the frequencies of periodic disturbances. With this Catastrophe Theory approach, a system bifurcation set can be identified to assess the unstable phenomena of power systems.

AB - In recent publications dealing with nonlinear systems, nonlinearities existing in the systems under study have drawn much attention. Studies on the effects of nonlinearities in power systems are becoming an increasingly important part of the research on system stability. It is probable that heretofore undiscovered phenomena caused by the nonlinearities involved in load flow equations, generator swing equations and characteristics of control equipments and loads, etc., may be found. This paper presents a new Catastrophe Theory application to nonlinear power systems. Making use of the concept of Duffing's equation, it is shown that a Catastrophe Theory analogy can be used to interpret unstable phenomena caused by system nonlinearities from the viewpoint of oscillations. When considering system nonlinearities due to poor combinations of system parameters and periodic disturbances, there may exist the characteristic 'jumps' in system rates that correspond to slow (quasi-dynamic) changes of the frequencies of periodic disturbances. With this Catastrophe Theory approach, a system bifurcation set can be identified to assess the unstable phenomena of power systems.

UR - http://www.scopus.com/inward/record.url?scp=0029490037&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0029490037&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:0029490037

VL - 115

SP - 40

EP - 48

JO - Electrical Engineering in Japan (English translation of Denki Gakkai Ronbunshi)

JF - Electrical Engineering in Japan (English translation of Denki Gakkai Ronbunshi)

SN - 0424-7760

IS - 7

ER -