Application of Electrochemically Formed Polyazulene to Rechargeable Lithium Battery

Tetsuya Osaka, Katsuhiko Naoi, Takayuki Hirabayashi

研究成果: Article査読

27 被引用数 (Scopus)


An electrochemically formed polyazulene(PAz), one of the electroconductive polycyclic hydrocarbons, was studied for its electrochemical properties in order to examine the possibility of utilizing it as a cathode active material of rechargeable lithium battery. The electrode kinetics of PAz film electrode, especially the anion doping-undoping process, were investigated mainly with cyclic voltammetry and FFT impedance method. The cyclic voltammetric results of PAz film showed a highly reversible redox process. Cole-Cole plots for PAz electrode obtained by impedance measurement as a function of doping potential were also found to offer an indication that PAz can be an excellent battery material. The charging-discharging property, and the cyclability of a Li/LiClO4-PC(propylene carbonate)/PAz battery were then studied as a function of the film thickness of PAz cathode. The charging-discharging behavior of Li/LiClO4-PC/PAz was also compared with those of Li/LiClO4-PC/polypyrrole and Li/LiClO4-PC/polyaniline batteries, which had been examined earlier. When compared with Li/LiClO4-PC/polypyrrole or Li/LiClO4-PC/polyaniline batteries, a Li/LiClO4/PAz battery showed fairly high and constant discharge voltage (ca. 3.2V), while keeping 100% of coulombic yield. Inspection by SEM showed that the surface condition of PAz film greatly resembled that of polypyrrole, however, a 10 C cm-2PAz film was prepared with thicker than polypyrrole formed with the same amount of charge of 10 C cm-2.

ジャーナルJournal of the Electrochemical Society
出版ステータスPublished - 1987 11月

ASJC Scopus subject areas

  • 電子材料、光学材料、および磁性材料
  • 再生可能エネルギー、持続可能性、環境
  • 表面、皮膜および薄膜
  • 電気化学
  • 材料化学


「Application of Electrochemically Formed Polyazulene to Rechargeable Lithium Battery」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。