Application of universal learning networks to PV-supplied DC motor drives

Ahmed Hussein, Kotaro Hirasawa*, Jinglu Hu, Kiyoshi Wada

*この研究の対応する著者

研究成果: Article査読

2 被引用数 (Scopus)

抄録

This paper describes the application of Universal Learning Networks (ULNs) to the speed control of a separately excited dc motor drives fed from Photovoltaic (PV) generators via dc-dc buck-boost converters. In this application, two ULNs are used: the first is the Universal Learning Network Identifier (ULNI) that used to emulate the dynamic performance of the motor system. The second is the Universal Learning Network Controller (ULNC) that used to control the converter duty ratio so that the motor speed can follow an arbitrary reference signal. In addition to that, the overall system can operate at the Maximum Power Point (MPP) of the PV source. The free parameters of both networks are updated online by the forward propagation scheme, which is considered as an extended version of the Rel Time Recurrent Learning (RTRL). The simulation results showed good performance for the controller and the identifier networks. Promising results are also observed when the identifier network is trained in an environment contaminated with noise.

本文言語English
ページ(範囲)129-134
ページ数6
ジャーナルResearch Reports on Information Science and Electrical Engineering of Kyushu University
8
2
出版ステータスPublished - 2003 9月 1

ASJC Scopus subject areas

  • コンピュータ サイエンス(全般)
  • 電子工学および電気工学

フィンガープリント

「Application of universal learning networks to PV-supplied DC motor drives」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル