Application of variational Bayesian estimation and clustering to acoustic model adaptation

Shinji Watanabe, Yasuhiro Minami, Atsushi Nakamura, Naonori Ueda

研究成果: Conference article

3 被引用数 (Scopus)

抄録

In this paper, we apply Variational Bayesian Estimation and Clustering for speech recognition (VBEC) to an acoustic model adaptation. VBEC can estimate parameter posteriors even when a model includes hidden variables, by using Variational Bayesian approach. In addition, VBEC can select an appropriate model structure in clustering triphone states, according to the amount of available adaptation data. Unlike a conventional Bayesian method such as Maximum A Posteriori (MAP), VBEC is useful even in the case of small amounts of data, because the amount of data per one Gaussian increases due to the model structure selection, and over-training is suppressed. We conduct an off-line supervised adaptation experiment on isolated word recognition, and show the advantage of the proposed method over the conventional method, especially when dealing with small amounts of adaptation data.

本文言語English
ページ(範囲)568-571
ページ数4
ジャーナルICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
1
出版ステータスPublished - 2003 9 25
外部発表はい
イベント2003 IEEE International Conference on Accoustics, Speech, and Signal Processing - Hong Kong, Hong Kong
継続期間: 2003 4 62003 4 10

ASJC Scopus subject areas

  • Software
  • Signal Processing
  • Electrical and Electronic Engineering

フィンガープリント 「Application of variational Bayesian estimation and clustering to acoustic model adaptation」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル