Aprotic Lithium–Air Batteries Tested in Ambient Air with a High-Performance and Low-Cost Bifunctional Perovskite Catalyst

Junfang Cheng, Yuexing Jiang, Ming Zhang, Yu Sun, Lu Zou, Bo Chi, Jian Pu, Li Jian

研究成果: Article査読

4 被引用数 (Scopus)

抄録

Aprotic lithium–air batteries (LABs) with remarkably high energy density are facing some challenges, including insufficient cycle stability, high-cost for applications, and unclear understanding about the mechanism. Seeking high-performance and low-cost catalysts is one of the effective solutions to resolve these problems. Perovskite oxide La0.6Sr0.4CoO3 (LSC) together with Fe and Mn doped materials La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) and La0.6Sr0.4Co0.2Mn0.8O3 (LSCM) are prepared and applied as catalysts for LABs, which have been previously studied mostly in a pure oxygen atmosphere and rarely in ambient air. The results show that these catalysts are effective for LABs, and LSCF can improve the capacity and cycle number to 6027 mA h g−1 and 156 at current density of 400 mA g−1 in ambient air. The reasons for performance degradation of LABs tested in ambient air are discussed by EIS spectra and products analysis, which also clarifies the reason for improvement of the LSCF catalyst.

本文言語English
ページ(範囲)1635-1642
ページ数8
ジャーナルChemCatChem
10
7
DOI
出版ステータスPublished - 2018 4 9
外部発表はい

ASJC Scopus subject areas

  • 触媒
  • 物理化学および理論化学
  • 有機化学
  • 無機化学

フィンガープリント

「Aprotic Lithium–Air Batteries Tested in Ambient Air with a High-Performance and Low-Cost Bifunctional Perovskite Catalyst」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル