Asymptotic behavior for scalar viscous conservation laws with boundary effect

Tai Ping Liu, Kenji Nishihara

    研究成果: Article査読

    59 被引用数 (Scopus)

    抄録

    We consider the asymptotic stability of viscous shock wave φ for scalar viscous conservation laws ut+f(u)χ=uχχ on the half-space (-∞, 0) with boundary values u|χ=-∞=u-,u|χ=0=u+. Our problem is divided into three cases depending on the sign of shock speed s of the shock (u-, u+). When s≤0, the asymptotic state of u becomes φ(·+d(t)), where d(t) depends implicitly on the initial data u(χ, 0) and is related to the boundary layer of the solution at the boundary χ=0. The stability of this state for s<0 will be shown by applying the weighted energy method. For s=0 a conjecture on d(t) will be presented. The case s>0 is also treated.

    本文言語English
    ページ(範囲)296-320
    ページ数25
    ジャーナルJournal of Differential Equations
    133
    2
    出版ステータスPublished - 1997 1月 20

    ASJC Scopus subject areas

    • 分析

    フィンガープリント

    「Asymptotic behavior for scalar viscous conservation laws with boundary effect」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

    引用スタイル