Asymptotic behavior of solutions to elliptic and parabolic equations with unbounded coefficients of the second order in unbounded domains

Hideo Kozono*, Yutaka Terasawa, Yuta Wakasugi

*この研究の対応する著者

研究成果: Article査読

抄録

We study an asymptotic behavior of solutions to elliptic equations of the second order in a two dimensional exterior domain. Under the assumption that the solution belongs to Lq with q∈ [2 , ∞) , we prove a pointwise asymptotic estimate of the solution at the spatial infinity in terms of the behavior of the coefficients. As a corollary, we obtain the Liouville-type theorem in the case when the coefficients may grow at the spacial infinity. We also study a corresponding parabolic problem in the n-dimensional whole space and discuss the energy identity for solutions in Lq. As a corollary we show also the Liouville-type theorem for both forward and ancient solutions.

本文言語English
ページ(範囲)1105-1117
ページ数13
ジャーナルMathematische Annalen
380
3-4
DOI
出版ステータスPublished - 2021 8

ASJC Scopus subject areas

  • 数学 (全般)

フィンガープリント

「Asymptotic behavior of solutions to elliptic and parabolic equations with unbounded coefficients of the second order in unbounded domains」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル