Asymptotic behavior of solutions to the generalized cubic double dispersion equation in one space dimension

Masakazu Kato, Yu Zhu Wang, Shuichi Kawashima

研究成果: Article査読

21 被引用数 (Scopus)

抄録

We study the initial value problem for the generalized cubic double dispersion equation in one space dimension. We establish a nonlinear approximation result to our global solutions that was obtained in [6]. Moreover, we show that as time tends to infinity, the solution approaches the superposition of nonlinear diffusion waves which are given explicitly in terms of the self-similar solution of the viscous Burgers equation. The proof is based on the semigroup argument combined with the analysis of wave decomposition

本文言語English
ページ(範囲)969-987
ページ数19
ジャーナルKinetic and Related Models
6
4
DOI
出版ステータスPublished - 2013 12
外部発表はい

ASJC Scopus subject areas

  • Numerical Analysis
  • Modelling and Simulation

フィンガープリント 「Asymptotic behavior of solutions to the generalized cubic double dispersion equation in one space dimension」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル