Asymptotic conformality of the Barycentric extension of quasiconformal maps

Katsuhiko Matsuzaki, Masahiro Yanagishita

研究成果: Article査読

5 被引用数 (Scopus)

抄録

We first remark that the complex dilatation of a quasiconformal homeomorphism of a hyperbolic Riemann surface R obtained by the barycentric extension due to Douady-Earle vanishes at any cusp of R. Then we give a new proof, without using the Bers embedding, of a fact that the quasiconformal homeomorphism obtained by the barycentric extension from an integrable Beltrami coefficient on R is asymptotically conformal if R satisfies a certain geometric condition.

本文言語English
ページ(範囲)85-90
ページ数6
ジャーナルFilomat
31
1
DOI
出版ステータスPublished - 2017

ASJC Scopus subject areas

  • 数学 (全般)

フィンガープリント

「Asymptotic conformality of the Barycentric extension of quasiconformal maps」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル