Asymptotic structure of a leray solution to the navier-stokes flow around a rotating body

Reinhard Farwig, Giovanni P. Galdi, Mads Kyed

研究成果: Article査読

21 被引用数 (Scopus)

抄録

Consider a body, B, rotating with constant angular velocity ω and fully submerged in a Navier-Stokes liquid that fills the whole space exterior to B. We analyze the flow of the liquid that is steady with respect to a frame attached to B. Our main theorem shows that the velocity field u of any weak solution (u p) in the sense of Leray has an asymptotic expansion with a suitable Landau solution as leading term and a remainder decaying pointwise like 1/ (x(1+αas (x(→∞for any α.∈(0,1), provided the magnitude of ω is below a positive constant depending on α.We also furnish analogous expansions for ▶u and for the corresponding pressure field p. These results improve and clarify a recent result of R. Farwig and T. Hishida.

本文言語English
ページ(範囲)367-382
ページ数16
ジャーナルPacific Journal of Mathematics
253
2
DOI
出版ステータスPublished - 2011
外部発表はい

ASJC Scopus subject areas

  • 数学 (全般)

フィンガープリント

「Asymptotic structure of a leray solution to the navier-stokes flow around a rotating body」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル