Atmospheric Modeling of 137Cs Plumes From the Fukushima Daiichi Nuclear Power Plant—Evaluation of the Model Intercomparison Data of the Science Council of Japan

K. Kitayama, Y. Morino*, M. Takigawa, T. Nakajima, H. Hayami, H. Nagai, H. Terada, K. Saito, T. Shimbori, M. Kajino, T. T. Sekiyama, D. Didier, A. Mathieu, D. Quélo, T. Ohara, H. Tsuruta, Y. Oura, M. Ebihara, Y. Moriguchi, T. Shibata

*この研究の対応する著者

研究成果: Article査読

17 被引用数 (Scopus)

抄録

Since the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident in March 2011, atmospheric simulation models have improved our understanding of the atmospheric behavior of radionuclides. Model intercomparisons provide valuable and useful information for evaluating the validity and variability of individual model results. In this study, we compared results of seven atmospheric transport models used to simulate 137Cs released from the FDNPP to the atmosphere. All model results used in this analysis had been submitted for a model intercomparison project of the Science Council of Japan (2014, http://www.scj.go.jp/en/report/index.html). Here we assessed model performance by comparing model results with observed hourly atmospheric concentrations of 137Cs, with a particular focus on nine plumes over the Tohoku and Kanto regions. The intercomparison results showed that model performance in reproducing 137Cs concentrations was highly variable among different models and plumes. In general, models better reproduced plumes that passed over many observation stations. The performance among the models was consistent with the simulated wind fields and the source terms used. We also assessed model performance in relation to accumulated 137Cs deposition. Simulated areas of high 137Cs deposition were consistent with the simulated 137Cs plume pathways, though the models that best simulated atmospheric 137Cs concentrations were different from those that best simulated deposition. The ensemble mean of all models consistently reproduced atmospheric 137Cs concentrations and deposition well, suggesting that use of a multimodel ensemble results in more effective and consistent model performance.

本文言語English
ページ(範囲)7754-7770
ページ数17
ジャーナルJournal of Geophysical Research: Atmospheres
123
14
DOI
出版ステータスPublished - 2018 7 27
外部発表はい

ASJC Scopus subject areas

  • 大気科学
  • 地球物理学
  • 地球惑星科学(その他)
  • 宇宙惑星科学

フィンガープリント

「Atmospheric Modeling of <sup>137</sup>Cs Plumes From the Fukushima Daiichi Nuclear Power Plant—Evaluation of the Model Intercomparison Data of the Science Council of Japan」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル