Beam characteristics of positively and negatively charged droplets generated by vacuum electrospray of an ionic liquid

Yukio Fujiwara*, Naoaki Saito, Hidehiko Nonaka, Shingo Ichimura

*この研究の対応する著者

研究成果: Article査読

5 被引用数 (Scopus)

抄録

To develop a vacuum-electrospray beam source for secondary ion mass spectrometry (SIMS), beam characteristics of charged droplets electrosprayed in vacuum were investigated in the negative-ion mode as well as the positive-ion mode. A quaternary ammonium ionic liquid was tested. Experimental results showed that there are differences as well as similarities between the positive-ion mode and the negative-ion mode. Beam current changed greatly with capillary voltage and the flow rate of the ionic liquid. Transient response analysis showed that the vacuum electrospray generated a mixed beam consisting of charged particles of smaller m=z values (m=z ∼ 10 3) and charged droplets of larger m=z values (m=z ∼ 10 5 to 10 6). It turned out that the m=z values of the charged droplets diminished with increasing capillary voltage. Using a threedimensional positioning stage, the capillary position dependence on the beam characteristics was measured. It proved to be of great importance to align the central axis of a capillary with those of apertures in order to maximize the current component of the charged droplets of the larger m=z values and minimize the ratio of the current component of the smaller m=z values. A high alignment accuracy proved to be required at small gap lengths between a capillary tip and a counter electrode.

本文言語English
論文番号036701
ジャーナルJapanese journal of applied physics
51
3 PART 1
DOI
出版ステータスPublished - 2012 3月 1
外部発表はい

ASJC Scopus subject areas

  • 工学(全般)
  • 物理学および天文学(全般)

フィンガープリント

「Beam characteristics of positively and negatively charged droplets generated by vacuum electrospray of an ionic liquid」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル