Betti tables of monomial ideals fixed by permutations of the variables

Satoshi Murai*

*この研究の対応する著者

研究成果: Article査読

4 被引用数 (Scopus)

抄録

Let Sn be a polynomial ring with n variables over a field and {In}n≥1 a chain of ideals such that each In is a monomial ideal of Sn fixed by permutations of the variables. In this paper, we present a way to determine all nonzero positions of Betti tables of In for all large intergers n from the Zmgraded Betti tables of Im for some small integers m. Our main result shows that the projective dimension and the regularity of In eventually become linear functions on n, confirming a special case of conjectures posed by Le, Nagel, Nguyen and Römer.

本文言語English
ページ(範囲)7087-7107
ページ数21
ジャーナルTransactions of the American Mathematical Society
373
10
DOI
出版ステータスPublished - 2020 10月

ASJC Scopus subject areas

  • 数学 (全般)
  • 応用数学

フィンガープリント

「Betti tables of monomial ideals fixed by permutations of the variables」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル