Beurling–Ahlfors extension by heat kernel, A-weights for VMO, and vanishing Carleson measures

Huaying Wei, Katsuhiko Matsuzaki

研究成果: Article査読


We investigate a variant of the Beurling–Ahlfors extension of quasisymmetric homeomorphisms of the real line that is given by the convolution of the heat kernel, and prove that the complex dilatation of such a quasiconformal extension of a strongly symmetric homeomorphism (that is, its derivative is an (Formula presented.) -weight whose logarithm is in VMO) induces a vanishing Carleson measure on the upper half-plane.

ジャーナルBulletin of the London Mathematical Society
出版ステータスAccepted/In press - 2021

ASJC Scopus subject areas

  • Mathematics(all)

フィンガープリント 「Beurling–Ahlfors extension by heat kernel, A<sub>∞</sub>-weights for VMO, and vanishing Carleson measures」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。