抄録
KIF1A is a kinesin family protein that moves over a long distance along the microtubule (MT) to transport synaptic vesicle precursors in neurons. A single KIF1A molecule can move toward the plus-end of MT in the monomeric form, exhibiting the characteristics of biased Brownian motion. However, how the bias is generated in the Brownian motion of KIF1A has not yet been firmly established. To elucidate this, we conducted a set of molecular dynamics simulations and observed the binding of KIF1A to MT. We found that KIF1A exhibits biased Brownian motion along MT as it binds to MT. Furthermore, we show that the bias toward the plus-end is generated by the ratchet-like energy landscape for the KIF1A-MT interaction, in which the electrostatic interaction and the negatively-charged C-terminal tail (CTT) of tubulin play an essential role. The relevance to the post-translational modifications of CTT is also discussed.
本文言語 | English |
---|---|
論文番号 | 1547 |
ページ(範囲) | 1-10 |
ページ数 | 10 |
ジャーナル | International journal of molecular sciences |
巻 | 22 |
号 | 4 |
DOI | |
出版ステータス | Published - 2021 2月 |
ASJC Scopus subject areas
- 触媒
- 分子生物学
- 分光学
- コンピュータ サイエンスの応用
- 物理化学および理論化学
- 有機化学
- 無機化学