Binary Neural Network in Robotic Manipulation: Flexible Object Manipulation for Humanoid Robot Using Partially Binarized Auto-Encoder on FPGA

Satoshi Ohara, Tetsuya Ogata, Hiromitsu Awano

研究成果: Conference contribution

1 被引用数 (Scopus)

抄録

A neural network based flexible object manipulation system for a humanoid robot on FPGA is proposed. Although the manipulations of flexible objects using robots attract ever increasing attention since these tasks are the basic and essential activities in our daily life, it has been put into practice only recently with the help of deep neural networks. However such systems have relied on GPU accelerators, which cannot be implemented into the space limited robotic body. Although field programmable gate arrays (FPGAs) are known to be energy efficient and suitable for embedded systems, the model size should be drastically reduced since FPGAs have limited on-chip memory. To this end, we propose partially binarized deep convolutional auto-encoder technique, where only an encoder part is binarized to compress model size without degrading the inference accuracy. The model implemented on Xilinx ZCU102 achieves 41.1 frames per second with a power consumption of 3.1 W, which corresponds to 10× and 3.7× improvements from the systems implemented on Core i7 6700K and RTX 2080 Ti, respectively.

本文言語English
ホスト出版物のタイトルIEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2021
出版社Institute of Electrical and Electronics Engineers Inc.
ページ6010-6015
ページ数6
ISBN(電子版)9781665417143
DOI
出版ステータスPublished - 2021
イベント2021 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2021 - Prague, Czech Republic
継続期間: 2021 9月 272021 10月 1

出版物シリーズ

名前IEEE International Conference on Intelligent Robots and Systems
ISSN(印刷版)2153-0858
ISSN(電子版)2153-0866

Conference

Conference2021 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2021
国/地域Czech Republic
CityPrague
Period21/9/2721/10/1

ASJC Scopus subject areas

  • 制御およびシステム工学
  • ソフトウェア
  • コンピュータ ビジョンおよびパターン認識
  • コンピュータ サイエンスの応用

フィンガープリント

「Binary Neural Network in Robotic Manipulation: Flexible Object Manipulation for Humanoid Robot Using Partially Binarized Auto-Encoder on FPGA」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル