Bioinspired water-enhanced mechanical gradient nanocomposite films that mimic the architecture and properties of the squid beak

Justin D. Fox, Jeffrey R. Capadona, Paul D. Marasco, Stuart J. Rowan

研究成果: Article

72 引用 (Scopus)


Inspired by the water-enhanced mechanical gradient character of the squid beak, we herein report a nanocomposite that mimics both the architecture and properties of this interesting natural material. Similar to the squid beak, we have developed nanocomposites where the degree of cross-linking is controlled along the length of the film. In this study, we utilized tunicate cellulose nanocrystals as the nanofiller that are functionalized with allyl moieties. Using photoinduced thiol-ene chemistry, we have been able to cross-link the CNC nanofiller. In the dry state where strong CNC interactions can occur, only a small mechanical contrast is observed between the cross-linked and uncross-linked samples. However, when the films are exposed to water, which "switches off" the noncovalent CNC interactions, a significant mechanical contrast is observed between the same films. For example, at 20 wt % CNC (in the dry film), an increase in wet modulus from 60 to 300 MPa (∼500% increase) is observed after photoirradiation. Furthermore, we show that the wet modulus can be controlled by altering the UV exposure time which allows access to mechanical gradient films.

ジャーナルJournal of the American Chemical Society
出版物ステータスPublished - 2013 4 3


ASJC Scopus subject areas

  • Chemistry(all)
  • Catalysis
  • Biochemistry
  • Colloid and Surface Chemistry