Boron extraction with 2-ethyl-1,3-hexanediol using a microchannel device for high-purity source of solar-grade silicon

Nobufumi Matsuo, Yuki Matsui, Yasuhiro Fukunaka, Takayuki Homma

研究成果: Article

5 引用 (Scopus)

抜粋

A novel approach toward the purification of silica and removal of boron impurities via solvent extraction with 2-ethyl-1,3-hexanediol using a microchannel device is presented. The microchannel, fabricated on Si substrates using lithographic techniques, had 100 μm width, 100 μm depth, and 10 mm length. Amorphous silica spiked with a trace amount of boric acid and refined diatomaceous earth used as silica feedstock were purified. Residual boron content was determined by inductively coupled argon plasma atomic emission spectrometry. Following extraction using a microchannel device, the residual boron content was less than 1.0 ppm for the former silica feedstock and than 2.5 ppm for the latter one, and the contact reaction period was 0.03 seconds for both type of silica feedstock. These are lower and significantly shorter due to much shorter diffusion distance and much larger specific interfacial area as compared to those observed when using a conventional separatory funnel, for both types of silica feedstock. Hence, it is suggested that microchannel devices can be utilized as an attractive approach toward the production of high-purity silica as a source for solar-grade silicon.

元の言語English
ページ(範囲)E93-E96
ジャーナルJournal of the Electrochemical Society
161
発行部数5
DOI
出版物ステータスPublished - 2014

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Renewable Energy, Sustainability and the Environment
  • Surfaces, Coatings and Films
  • Electrochemistry
  • Materials Chemistry

フィンガープリント Boron extraction with 2-ethyl-1,3-hexanediol using a microchannel device for high-purity source of solar-grade silicon' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用