Boundary harnack inequality for Markov processes with jumps

Krzysztof Bogdan*, Takashi Kumagai, Mateusz Kwaśnicki

*この研究の対応する著者

研究成果: Article査読

35 被引用数 (Scopus)

抄録

We prove a boundary Harnack inequality for jump-type Markov processes on metric measure state spaces, under comparability estimates of the jump kernel and Urysohn-type property of the domain of the generator of the process. The result holds for positive harmonic functions in arbitrary open sets. It applies, e.g., to many subordinate Brownian motions, Lévy processes with and without continuous part, stable-like and censored stable processes, jump processes on fractals, and rather general Schrödinger, drift and jump perturbations of such processes.

本文言語English
ページ(範囲)477-517
ページ数41
ジャーナルTransactions of the American Mathematical Society
367
1
DOI
出版ステータスPublished - 2015
外部発表はい

ASJC Scopus subject areas

  • 数学 (全般)
  • 応用数学

フィンガープリント

「Boundary harnack inequality for Markov processes with jumps」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル