TY - JOUR
T1 - Bounded H∞-calculus for the hydrostatic stokes operator on Lp-spaces and applications
AU - Giga, Yoshikazu
AU - Gries, Mathis
AU - Hieber, Matthias Georg
AU - Hussein, Amru
AU - Kashiwabara, Takahito
PY - 2017
Y1 - 2017
N2 - It is shown that the hydrostatic Stokes operator on Lp/σ(Ω), where Ω ⊂ ℝ3 is a cylindrical domain subject to mixed periodic, Dirichlet and Neumann boundary conditions, admits a bounded H∞-calculus on Lp/σ(Ω) for p ∈ (1, ∞) of H∞-angle 0. In particular, maximal Lq − Lp-regularity estimates for the linearized primitive equations are obtained.
AB - It is shown that the hydrostatic Stokes operator on Lp/σ(Ω), where Ω ⊂ ℝ3 is a cylindrical domain subject to mixed periodic, Dirichlet and Neumann boundary conditions, admits a bounded H∞-calculus on Lp/σ(Ω) for p ∈ (1, ∞) of H∞-angle 0. In particular, maximal Lq − Lp-regularity estimates for the linearized primitive equations are obtained.
KW - H-functional calculus
KW - Hydrostatic Stokes operator
KW - Maximal L-regularity
UR - http://www.scopus.com/inward/record.url?scp=85021426982&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85021426982&partnerID=8YFLogxK
U2 - 10.1090/proc/13676
DO - 10.1090/proc/13676
M3 - Article
AN - SCOPUS:85021426982
SN - 0002-9939
VL - 145
SP - 3865
EP - 3876
JO - Proceedings of the American Mathematical Society
JF - Proceedings of the American Mathematical Society
IS - 9
ER -