Burnside groups and n-moves for links

Haruko A. Miyazawa, Kodai Wada, Akira Yasuhara

研究成果: Article

抜粋

M. K. Dabkowski and J. H. Przytycki introduced the nth Burnside group of a link, which is an invariant preserved by n-moves. Using this invariant, for an odd prime p, they proved that there are links which cannot be reduced to trivial links via p-moves. It is generally difficult to determine if pth Burnside groups associated to a link and the corresponding trivial link are isomorphic. In this paper, we give a necessary condition for the existence of such an isomorphism. Using this condition we give a simple proof for their results that concern p-move reducibility of links.

元の言語English
ページ(範囲)3595-3602
ページ数8
ジャーナルProceedings of the American Mathematical Society
147
発行部数8
DOI
出版物ステータスPublished - 2019

ASJC Scopus subject areas

  • Mathematics(all)
  • Applied Mathematics

フィンガープリント Burnside groups and n-moves for links' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用