Carbon vacancies and hydroxyls in graphitic carbon nitride: Promoted photocatalytic NO removal activity and mechanism

Zhanyong Gu, Zhitao Cui, Zijing Wang, Ken Sinkou Qin, Yusuke Asakura, Takuya Hasegawa, Satoshi Tsukuda, Kenta Hongo, Ryo Maezono, Shu Yin

研究成果: Article査読

5 被引用数 (Scopus)

抄録

The carbon vacancies and hydroxyls co-modified CN (CH[sbnd]CN) was successfully prepared using a green hydrothermal method. During the hydrothermal process, the water played an important role in etching the unstable partial of bulk CN to introduce carbon vacancies and hydroxyls into the CH[sbnd]CN nanosheets. The carbon vacancies and hydroxyls co-modified CH[sbnd]CN displayed 2.2 times higher photocatalytic NO removal performance than that of pristine CN. Detailed experimental characterizations and density functional theory calculations revealed that the enhanced photocatalytic NO removal performance of CH[sbnd]CN nanosheet was largely ascribed to synergistic effects of carbon vacancies and hydroxyls. The carbon vacancies could narrow the bandgap of modified CH[sbnd]CN nanosheet to improve the light-absorbing capability; the hydroxyls enabled to form stable covalent bonds acted as electron transport channels to facilitate the charge carrier separation. This study may provide new insights into vacancies engineering for enhancing the photocatalytic activity of CN-based photocatalysts.

本文言語English
論文番号119376
ジャーナルApplied Catalysis B: Environmental
279
DOI
出版ステータスPublished - 2020 12 15
外部発表はい

ASJC Scopus subject areas

  • Catalysis
  • Environmental Science(all)
  • Process Chemistry and Technology

フィンガープリント 「Carbon vacancies and hydroxyls in graphitic carbon nitride: Promoted photocatalytic NO removal activity and mechanism」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル