Characteristic-Galerkin and Galerkin/least-squares space-time formulations for the advection-diffusion equation with time-dependent domains

O. Pironneau, J. Liou, T. Tezduyar

研究成果: Article

63 引用 (Scopus)

抜粋

For the advection-diffusion equation, the characteristic-Galerkin formulations are obtained by temporal discretization of the total derivative. These formulations, by construction, are Eulerian-Lagrangian, and therefore can handle time-dependent domains without difficulty. The Galerkin/least-squares space-time formulation, on the other hand, is written over the space-time domain of a problem, and therefore can handle time-dependent domains with no implementational difficulty. The purpose of this paper is to compare these two formulations based on error estimates and numerical performance, in the context of the advection-diffusion equation.

元の言語English
ページ(範囲)117-141
ページ数25
ジャーナルComputer Methods in Applied Mechanics and Engineering
100
発行部数1
DOI
出版物ステータスPublished - 1992 10
外部発表Yes

ASJC Scopus subject areas

  • Computational Mechanics
  • Mechanics of Materials
  • Mechanical Engineering
  • Physics and Astronomy(all)
  • Computer Science Applications

フィンガープリント Characteristic-Galerkin and Galerkin/least-squares space-time formulations for the advection-diffusion equation with time-dependent domains' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用