Characteristic spaces emerging from primitive chaos

Yoshihito Ogasawara, Shin'ichi Oishi

研究成果: Article査読

2 被引用数 (Scopus)

抄録

This paper describes the emergence of two characteristic notions, nondegenerate Peano continuum and Cantor set, by the exploration of the essence of the existence of primitive chaos from a topological viewpoint. The primitive chaos is closely related to vital problems in physics itself and leads to chaotic features under natural conditions. The nondegenerate Peano continuum represents an ordinarily observed space, and the existence of a single nondegenerate Peano continuum guarantees the existence of infinite varieties of the primitive chaos leading to the chaos. This result provides an explanation of the reason why we are surrounded by diverse chaotic behaviors. Also, the Cantor set is a general or universal notion different from the special set, the Cantor middle-third set, and the existence of a single Cantor set guarantees infinite varieties of the primitive chaos leading to the chaos. This analogy implies the potential of the Cantor set for the method of new recognizing physical phenomena.

本文言語English
論文番号014001
ジャーナルjournal of the physical society of japan
83
1
DOI
出版ステータスPublished - 2014 1月 15

ASJC Scopus subject areas

  • 物理学および天文学(全般)

フィンガープリント

「Characteristic spaces emerging from primitive chaos」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル