Characterization of intermittency in renewal processes: Application to earthquakes

Takuma Akimoto*, Tomohiro Hasumi, Yoji Aizawa

*この研究の対応する著者

研究成果査読

11 被引用数 (Scopus)

抄録

We construct a one-dimensional piecewise linear intermittent map from the interevent time distribution for a given renewal process. Then, we characterize intermittency by the asymptotic behavior near the indifferent fixed point in the piecewise linear intermittent map. Thus, we provide a framework to understand a unified characterization of intermittency and also present the Lyapunov exponent for renewal processes. This method is applied to the occurrence of earthquakes using the Japan Meteorological Agency and the National Earthquake Information Center catalog. By analyzing the return map of interevent times, we find that interevent times are not independent and identically distributed random variables but that the conditional probability distribution functions in the tail obey the Weibull distribution.

本文言語English
論文番号031133
ジャーナルPhysical Review E - Statistical, Nonlinear, and Soft Matter Physics
81
3
DOI
出版ステータスPublished - 2010 3 30

ASJC Scopus subject areas

  • 凝縮系物理学
  • 統計物理学および非線形物理学
  • 統計学および確率

フィンガープリント

「Characterization of intermittency in renewal processes: Application to earthquakes」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル