Circle packings on surfaces with projective structures and uniformization

Sadayoshi Kojima*, Shigeru Mizushima, Ser Peow Tan

*この研究の対応する著者

研究成果: Article査読

抄録

Let Σg be a closed orientable surface of genus g ≥ 2 and a graph on Σg with one vertex that lifts to a triangulation of the universal cover. We have shown before that the cross ratio parameter space C{script}τ associated with τ, which can be identified with the set of all pairs of a projective structure and a circle packing on it with nerve isotopic to τ is homeomorphic to R{double-struck}6g-6, and moreover that the forgetting map of C{script}τ to the space of projective structures is injective. Here we show that the composition of the forgetting map with the uniformization from C{script}τ to the Teichmüller space T{script}g is proper.

本文言語English
ページ(範囲)287-300
ページ数14
ジャーナルPacific Journal of Mathematics
225
2
DOI
出版ステータスPublished - 2006 6月
外部発表はい

ASJC Scopus subject areas

  • 数学 (全般)

フィンガープリント

「Circle packings on surfaces with projective structures and uniformization」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル