### 抜粋

Along the line of Hirst-Mummert and Dorais , we analyze the relationship between the classical provability of uniform versions Uni(S) of Π_{2}-statements S with respect to higher order reverse mathematics and the intuitionistic provability of S. Our main theorem states that (in particular) for every Π_{2}-statement S of some syntactical form, if its uniform version derives the uniform variant of ACA over a classical system of arithmetic in all finite types with weak extensionality, then S is not provable in strong semi-intuitionistic systems including bar induction BI in all finite types but also nonconstructive principles such as Konig's lemma KL and uniform weak Konig's lemma UWKL. Our result is applicable to many mathematical principles whose sequential versions imply ACA.

元の言語 | English |
---|---|

ページ（範囲） | 132-150 |

ページ数 | 19 |

ジャーナル | Mathematical Logic Quarterly |

巻 | 61 |

発行部数 | 3 |

DOI | |

出版物ステータス | Published - 2015 5 1 |

外部発表 | Yes |

### ASJC Scopus subject areas

- Logic

## フィンガープリント Classical provability of uniform versions and intuitionistic provability' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

## これを引用

*Mathematical Logic Quarterly*,

*61*(3), 132-150. https://doi.org/10.1002/malq.201300056