Classification accuracy improvement of chromatic and high–frequency code–modulated visual evoked potential–based BCI

Daiki Aminaka, Shoji Makino, Tomasz M. Rutkowski*

*この研究の対応する著者

研究成果: Conference contribution

7 被引用数 (Scopus)

抄録

We present results of a classification improvement approach for a code–modulated visual evoked potential (cVEP) based brain– computer interface (BCI) paradigm using four high–frequency flashing stimuli. Previously published research reports presented successful BCI applications of canonical correlation analysis (CCA) to steady–state visual evoked potential (SSVEP) BCIs. Our team already previously proposed the combined CCA and cVEP techniques’ BCI paradigm. The currently reported study presents the further enhanced results using a support vector machine (SVM) method in application to the cVEP–based BCI.

本文言語English
ホスト出版物のタイトルBrain Informatics and Health - 8th International Conference, BIH 2015, Proceedings
編集者Yike Guo Y., Sean Hill S., Karl Friston, Hanchuan Peng, Aldo Faisal A.
出版社Springer Verlag
ページ232-241
ページ数10
ISBN(印刷版)9783319233437
DOI
出版ステータスPublished - 2015
外部発表はい
イベント8th International Conference on Brain Informatics and Health, BIH 2015 - London, United Kingdom
継続期間: 2015 8月 302015 9月 2

出版物シリーズ

名前Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
9250
ISSN(印刷版)0302-9743
ISSN(電子版)1611-3349

Other

Other8th International Conference on Brain Informatics and Health, BIH 2015
国/地域United Kingdom
CityLondon
Period15/8/3015/9/2

ASJC Scopus subject areas

  • 理論的コンピュータサイエンス
  • コンピュータ サイエンス(全般)

フィンガープリント

「Classification accuracy improvement of chromatic and high–frequency code–modulated visual evoked potential–based BCI」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル