抄録
We will study two kinds of actions of a discrete amenable Kac algebra. The first one is an action whose modular part is normal. We will construct a new invariant which generalizes a characteristic invariant for a discrete group action, and we will present a complete classification. The second is a centrally free action. By constructing a Rohlin tower in an asymptotic centralizer, we will show that the Connes-Takesaki module is a complete invariant.
本文言語 | English |
---|---|
ページ(範囲) | 1-134 |
ページ数 | 134 |
ジャーナル | Memoirs of the American Mathematical Society |
巻 | 245 |
号 | 1160 |
DOI | |
出版ステータス | Published - 2017 1 |
外部発表 | はい |
ASJC Scopus subject areas
- Mathematics(all)
- Applied Mathematics