Classification of actions of discrete Kac algebras on injective factors

Toshihiko Masuda, Reiji Tomatsu

研究成果: Review article査読

4 被引用数 (Scopus)

抄録

We will study two kinds of actions of a discrete amenable Kac algebra. The first one is an action whose modular part is normal. We will construct a new invariant which generalizes a characteristic invariant for a discrete group action, and we will present a complete classification. The second is a centrally free action. By constructing a Rohlin tower in an asymptotic centralizer, we will show that the Connes-Takesaki module is a complete invariant.

本文言語English
ページ(範囲)1-134
ページ数134
ジャーナルMemoirs of the American Mathematical Society
245
1160
DOI
出版ステータスPublished - 2017 1
外部発表はい

ASJC Scopus subject areas

  • Mathematics(all)
  • Applied Mathematics

フィンガープリント 「Classification of actions of discrete Kac algebras on injective factors」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル