Classification of links up to self pass-move

Tetsuo Shibuya, Akira Yasuhara

研究成果: Article査読

5 被引用数 (Scopus)

抄録

A pass-move and a #-move are local moves on oriented links defined by L. H. Kauffman and H. Murakami respectively. Two links are self pass-equivalent (resp. self #-equivalent) if one can be deformed into the other by pass-moves (resp. #-moves), where none of them can occur between distinct components of the link. These relations are equivalence relations on ordered oriented links and stronger than link-homotopy defined by J. Milnor. We give two complete classifications of links with arbitrarily many components up to self pass-equivalence and up to self #-equivalence respectively. So our classifications give subdivisions of link-homotopy classes.

本文言語English
ページ(範囲)939-946
ページ数8
ジャーナルJournal of the Mathematical Society of Japan
55
4
DOI
出版ステータスPublished - 2003
外部発表はい

ASJC Scopus subject areas

  • 数学 (全般)

フィンガープリント

「Classification of links up to self pass-move」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル