Classification of links up to self pass-move

Tetsuo Shibuya, Akira Yasuhara

研究成果: Article

5 引用 (Scopus)

抜粋

A pass-move and a #-move are local moves on oriented links defined by L. H. Kauffman and H. Murakami respectively. Two links are self pass-equivalent (resp. self #-equivalent) if one can be deformed into the other by pass-moves (resp. #-moves), where none of them can occur between distinct components of the link. These relations are equivalence relations on ordered oriented links and stronger than link-homotopy defined by J. Milnor. We give two complete classifications of links with arbitrarily many components up to self pass-equivalence and up to self #-equivalence respectively. So our classifications give subdivisions of link-homotopy classes.

元の言語English
ページ(範囲)939-946
ページ数8
ジャーナルJournal of the Mathematical Society of Japan
55
発行部数4
DOI
出版物ステータスPublished - 2003 1 1
外部発表Yes

ASJC Scopus subject areas

  • Mathematics(all)

フィンガープリント Classification of links up to self pass-move' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用