Classification of Paved and Unpaved Road Image Using Convolutional Neural Network for Road Condition Inspection System

Vosco Pereira, Satoshi Tamura, Satoru Hayamizu, Hidekazu Fukai

研究成果: Conference contribution

9 被引用数 (Scopus)

抄録

Image processing techniques have been actively used for research on road condition inspection and achieving high detection accuracies. Many studies focus on the detection of cracks and potholes of the road. However, in some least developed countries, there are some distances of roads are still unpaved and it escaped the attention of the researchers. Inspired by penetration and success in applying deep learning technic to computer vision and to any other fields and by the existence of the various type of smartphone devices, we proposed a low - cost method for paved and unpaved road images classification using convolutional neural network (CNN). Our model is trained with 13.186 images and validate with 3.186 images which collected using smartphone device in various conditions of roads such as wet, muddy, dry, dusty and shady conditions and with different types of road surface such as ground, rocks and sands. The experiment using 500 new testing images showed that our model can achieve high Precision (98.0%), Recall (98.4%) and F1 - Score (98.2%) simultaneously.

本文言語English
ホスト出版物のタイトルICAICTA 2018 - 5th International Conference on Advanced Informatics
ホスト出版物のサブタイトルConcepts Theory and Applications
出版社Institute of Electrical and Electronics Engineers Inc.
ページ165-169
ページ数5
ISBN(電子版)9781538648049
DOI
出版ステータスPublished - 2018 11 20
外部発表はい
イベント5th International Conference on Advanced Informatics: Concepts Theory and Applications, ICAICTA 2018 - Krabi, Thailand
継続期間: 2018 8 142018 8 17

出版物シリーズ

名前ICAICTA 2018 - 5th International Conference on Advanced Informatics: Concepts Theory and Applications

Conference

Conference5th International Conference on Advanced Informatics: Concepts Theory and Applications, ICAICTA 2018
国/地域Thailand
CityKrabi
Period18/8/1418/8/17

ASJC Scopus subject areas

  • コンピュータ ネットワークおよび通信
  • コンピュータ サイエンスの応用
  • コンピュータ ビジョンおよびパターン認識
  • 情報システム

フィンガープリント

「Classification of Paved and Unpaved Road Image Using Convolutional Neural Network for Road Condition Inspection System」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル