Cloning and characterization of a human genomic sequence that alleviates repeat-induced gene silencing

Miki Fukuma, Yuto Ganmyo, Osamu Miura, Takashi Ohyama, Noriaki Shimizu

研究成果: Article査読

7 被引用数 (Scopus)


Plasmids bearing a mammalian replication initiation region (IR) and a nuclear matrix attachment region (MAR) are spontaneously amplified in transfected mammalian cells, and such amplification generates chromosomal homogeneously staining regions (HSRs) or extrachromosomal double minutes (DMs). This method provides a novel, efficient, and rapid way to establish cells that stably produce high levels of recombinant proteins. However, because IR/MAR plasmids are amplified as repeats, they are frequently targeted by repeat-induced gene silencing (RIGS), which silences a variety of repeated sequences in transgenes and the genome. To address this problem, we developed a novel screening system using the IR/MAR plasmid to isolate human genome sequences that alleviate RIGS. The screen identified a 3,271 bp sequence (B-3-31) that elevated transgene expression without affecting the amplification process. Neither non-B structure (i.e., the inverted repeats or bending) nor known epigenetic modifier elements such as MARs, insulators, UCOEs, or STARs could explain the anti-silencing activity of B-3-31. Instead, the activity was distributed throughout the entire B-3-31 sequence, which was extremely A/T-rich and CpG-poor. Because B-3-31 effectively and reproducibly alleviated RIGS of repeated genes, it could be used to increase recombinant protein production.

ジャーナルPloS one
出版ステータスPublished - 2016 4月

ASJC Scopus subject areas

  • 生化学、遺伝学、分子生物学(全般)
  • 農業および生物科学(全般)
  • 一般


「Cloning and characterization of a human genomic sequence that alleviates repeat-induced gene silencing」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。