Closed-form formulas for the Zhang-Zhang polynomials of benzenoid structures: Prolate rectangles and their generalizations

Chien Pin Chou, Jin Su Kang, Henryk A. Witek

研究成果: Article

7 引用 (Scopus)

抜粋

We show that the Zhang-Zhang (ZZ) polynomial of a benzenoid obtained by fusing a parallelogram M(m,n) with an arbitrary benzenoid structure ABC can be simply computed as a product of the ZZ polynomials of both fragments. It seems possible to extend this important result also to cases where both fused structures are arbitrary Kekuléan benzenoids. Formal proofs of explicit forms of the ZZ polynomials for prolate rectangles Pr(m,n) and generalized prolate rectangles Pr([m1,m2,. .,mn],n) follow as a straightforward application of the general theory, giving ZZ(Pr(m,n),x)=(1+(1+x){dot operator}m)n and ZZ(Pr([m1,m2,. .,mn],n),x)=∏k=1n(1+(1+x){dot operator}mk).

元の言語English
ジャーナルDiscrete Applied Mathematics
DOI
出版物ステータスAccepted/In press - 2014 9 18
外部発表Yes

ASJC Scopus subject areas

  • Applied Mathematics
  • Discrete Mathematics and Combinatorics

フィンガープリント Closed-form formulas for the Zhang-Zhang polynomials of benzenoid structures: Prolate rectangles and their generalizations' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用