Clouds Proportionate Medical Data Stream Analytics for Internet of Things-Based Healthcare Systems

Priyan Malarvizhi Kumar, Choong Seon Hong*, Fatemeh Afghah, Gunasekaran Manogaran, Keping Yu, Qiaozhi Hua, Jiechao Gao

*この研究の対応する著者

研究成果: Article査読

7 被引用数 (Scopus)

抄録

Internet of Things (IoT) assisted healthcare systems are designed for providing ubiquitous access and recommendations for personal and distributed electronic health services. The heterogeneous IoT platform assists healthcare services with reliable data management through dedicated computing devices. Healthcare services' reliability depends upon the efficient handling of heterogeneous data streams due to variations and errors. A Proportionate Data Analytics (PDA) for heterogeneous healthcare data stream processing is introduced in this manuscript. This analytics method differentiates the data streams based on variations and errors for satisfying the service responses. The classification is streamlined using linear regression for segregating errors from the variations in different time intervals. The time intervals are differentiated recurrently after detecting errors in the stream's variation. This process of differentiation and classification retains a high response ratio for healthcare services through spontaneous regressions. The proposed method's performance is analyzed using the metrics accuracy, identification ratio, delivery, variation factor, and processing time.

本文言語English
ページ(範囲)973-982
ページ数10
ジャーナルIEEE Journal of Biomedical and Health Informatics
26
3
DOI
出版ステータスPublished - 2022 3月 1

ASJC Scopus subject areas

  • バイオテクノロジー
  • コンピュータ サイエンスの応用
  • 電子工学および電気工学
  • 健康情報管理

フィンガープリント

「Clouds Proportionate Medical Data Stream Analytics for Internet of Things-Based Healthcare Systems」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル