Combinations of microphase separation and terminal multiple hydrogen bonding in novel macromolecules

Koji Yamauchi, Jeremy R. Lizotte, David M. Hercules, Matthew J. Vergne, Timothy Edward Long*

*この研究の対応する著者

研究成果: Article査読

143 被引用数 (Scopus)

抄録

The synthesis and characterization of terminal multiple hydrogen-bonded (MHB) polymers, such as poly(styrene) (PS), poly(isoprene) (PI), and microphase separated PS-b-PI block copolymers, possessing controlled molecular weights and narrow molecular distributions are described. Hydroxyl-terminated polymeric precursors were prepared using living anionic polymerization and subsequent quantitative termination with ethylene oxide. MHB polymers were synthesized in a controlled fashion via end-group modification of these well-defined macromolecular alcohols with excess isophorone diisocyanate and subsequent derivatization of the isocyanate-terminated polymeric intermediate with methyl isocytosine. The glass transition temperatures of the terminal MHB polymers were reproducibly higher than both nonfunctionalized and hydroxyl-terminated polymers at nearly equivalent number average molecular weights. Thin-layer chromatography analysis indicated that the interaction of terminal MHB polymers with silica was stronger as compared to both nonfunctionalized and hydroxyl-terminated polymers. Rheological characterization indicated that the melt viscosity at constant shear rate for various MHB polymers was more than 100 times higher than those for nonfunctionalized and hydroxyl-terminated polymers. Interestingly, the melt viscosity of MHB polymers was higher than those of nonfunctionalized polymers with twice the number average molecular weight. In addition, DSC and rheological characterization also suggested that terminal MHB polymers formed aggregates and not simple dimers in the melt state, and the aggregates were observed to completely dissociate at 80°C.

本文言語English
ページ(範囲)8599-8604
ページ数6
ジャーナルJournal of the American Chemical Society
124
29
DOI
出版ステータスPublished - 2002 7月 24
外部発表はい

ASJC Scopus subject areas

  • 触媒
  • 化学 (全般)
  • 生化学
  • コロイド化学および表面化学

フィンガープリント

「Combinations of microphase separation and terminal multiple hydrogen bonding in novel macromolecules」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル