Combinatorial Decompositions, Kirillov–Reshetikhin Invariants, and the Volume Conjecture for Hyperbolic Polyhedra

Alexander Kolpakov*, Jun Murakami

*この研究の対応する著者

研究成果: Article査読

抄録

We sugges. method of computing volume fo. simple polytop. in three-dimensional hyperbolic space H3. This method combines the combinatorial reduction o. a. trivalent graph Γ (the 1-skeleton of P) by I–H, or Whitehead, moves (together with shrinking of triangular faces) aligned with its geometric splitting into generalized tetrahedra. With each decomposition (under some conditions), we associat. potential function Φ such that the volume o. can be expressed throug. critical values of Φ. The results of our numeric experiments with this method suggest that one may associate the above-mentioned sequence of combinatorial moves with the sequence of moves required for computing the Kirillov–Reshetikhin invariants of the trivalent graph Γ. Then the corresponding geometric decomposition o. might be used in order to establis. link between the volume o. and the asymptotic behavior of the Kirillov–Reshetikhin invariants of Γ, which is colloquially known as the Volume Conjecture.

本文言語English
ページ(範囲)193-207
ページ数15
ジャーナルExperimental Mathematics
27
2
DOI
出版ステータスPublished - 2018 4月 3

ASJC Scopus subject areas

  • 数学 (全般)

フィンガープリント

「Combinatorial Decompositions, Kirillov–Reshetikhin Invariants, and the Volume Conjecture for Hyperbolic Polyhedra」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル