Commutation relations of Hecke operators for Arakawa lifting

Atsushi Murase*, Hiro Aki Narita

*この研究の対応する著者

研究成果: Article査読

6 被引用数 (Scopus)

抄録

T. Arakawa, in his unpublished note, constructed and studied a theta lifting from elliptic cusp forms to automorphic forms on the quaternion unitary group of signature (1, q). The second named author proved that such a lifting provides bounded (or cuspidal) automorphic forms generating quaternionic discrete series. In this paper, restricting ourselves to the case of q = 1, we reformulate Arakawa's theta lifting as a theta correspondence in the adelic setting and determine a commutation relation of Hecke operators satisfied by the lifting. As an application, we show that the theta lift of an elliptic Hecke eigenform is also a Hecke eigenform on the quaternion unitary group. We furthermore study the spinor L-function attached to the theta lift.

本文言語English
ページ(範囲)227-251
ページ数25
ジャーナルTohoku Mathematical Journal
60
2
DOI
出版ステータスPublished - 2008 6月
外部発表はい

ASJC Scopus subject areas

  • 数学 (全般)

フィンガープリント

「Commutation relations of Hecke operators for Arakawa lifting」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル