Comparison of auto-regressive, non-stationary excited signal parameter estimation methods

Akira Sasou, Masataka Goto, Satoru Hayamizu, Kazuyo Tanaka

研究成果

4 被引用数 (Scopus)

抄録

Previously, we proposed an Auto-Regressive Hidden Markov Model (AR-HMM) and an accompanying parameter estimation method. An AR-HMM was obtained by combining an AR process with an HMM introduced as a non-stationary excitation model. We demonstrated that the AR-HMM can accurately estimate the characteristics of both articulatory systems and excitation signals from high-pitched speech. As the parameter estimation method iteratively executes learning processes of HMM parameters, the proposed method was calculation-intensive. Here, we propose two novel kinds of auto-regressive, non-stationary excited signal parameter estimation methods to reduce the amount of calculation required.

本文言語English
ホスト出版物のタイトルMachine Learning for Signal Processing XIV - Proceedings of 2004 IEEE Signal Processing Society Workshop
編集者A. Barros, J. Principe, J. Larsen, T. Adali, S. Douglas
ページ295-304
ページ数10
出版ステータスPublished - 2004
外部発表はい
イベントMachine Learning for Signal Processing XIV - Proceedings of the 2004 IEEE Signal Processing Society Workshop - Sao Luis, Brazil
継続期間: 2004 9 292004 10 1

出版物シリーズ

名前Machine Learning for Signal Processing XIV - Proceedings of the 2004 IEEE Signal Processing Society Workshop

Conference

ConferenceMachine Learning for Signal Processing XIV - Proceedings of the 2004 IEEE Signal Processing Society Workshop
国/地域Brazil
CitySao Luis
Period04/9/2904/10/1

ASJC Scopus subject areas

  • 工学(全般)

フィンガープリント

「Comparison of auto-regressive, non-stationary excited signal parameter estimation methods」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル