Complex dynamics of a nonlinear voter model with contrarian agents

Shoma Tanabe, Naoki Masuda*

*この研究の対応する著者

研究成果査読

17 被引用数 (Scopus)

抄録

We investigate mean-field dynamics of a nonlinear opinion formation model with congregator and contrarian agents. Each agent assumes one of the two possible states. Congregators imitate the state of other agents with a rate that increases with the number of other agents in the opposite state, as in the linear voter model and nonlinear majority voting models. Contrarians flip the state with a rate that increases with the number of other agents in the same state. The nonlinearity controls the strength of the majority voting and is used as a main bifurcation parameter. We show that the model undergoes a rich bifurcation scenario comprising the egalitarian equilibrium, two symmetric lopsided equilibria, limit cycle, and coexistence of different types of stable equilibria with intertwining attractive basins.

本文言語English
論文番号043136
ジャーナルChaos
23
4
DOI
出版ステータスPublished - 2013 10 2
外部発表はい

ASJC Scopus subject areas

  • 統計物理学および非線形物理学
  • 数理物理学
  • 物理学および天文学(全般)
  • 応用数学

フィンガープリント

「Complex dynamics of a nonlinear voter model with contrarian agents」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル