Computing the local continuity order of optical flow using fractional variational method

K. Kashu, Y. Kameda, A. Imiya, T. Sakai, Yoshihiko Mochizuki

研究成果: Conference contribution

1 被引用数 (Scopus)

抄録

We introduce variational optical flow computation involving priors with fractional order differentiations. Fractional order differentiations are typical tools in signal processing and image analysis. The zero-crossing of a fractional order Laplacian yields better performance for edge detection than the zero-crossing of the usual Laplacian. The order of the differentiation of the prior controls the continuity class of the solution. Therefore, using the square norm of the fractional order differentiation of optical flow field as the prior, we develop a method to estimate the local continuity order of the optical flow field at each point. The method detects the optimal continuity order of optical flow and corresponding optical flow vector at each point. Numerical results show that the Horn-Schunck type prior involving the n + ε order differentiation for 0 < ε < 1 and an integer n is suitable for accurate optical flow computation.

本文言語English
ホスト出版物のタイトルLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
ページ154-167
ページ数14
5681 LNCS
DOI
出版ステータスPublished - 2009
外部発表はい
イベント7th International Conference on Energy Minimization Methods in Computer Vision and Pattern Recognition, EMMCVPR 2009 - Bonn
継続期間: 2009 8 242009 8 27

出版物シリーズ

名前Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
5681 LNCS
ISSN(印刷版)03029743
ISSN(電子版)16113349

Other

Other7th International Conference on Energy Minimization Methods in Computer Vision and Pattern Recognition, EMMCVPR 2009
CityBonn
Period09/8/2409/8/27

ASJC Scopus subject areas

  • Computer Science(all)
  • Theoretical Computer Science

フィンガープリント 「Computing the local continuity order of optical flow using fractional variational method」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル