Conformal designs and D.H. Lehmer's conjecture

研究成果: Article査読

3 被引用数 (Scopus)

抄録

In 1947, Lehmer conjectured that the Ramanujan τ-function τ(m) is non-vanishing for all positive integers m, where τ(m) are the Fourier coefficients of the cusp form δ of weight 12. It is known that Lehmer's conjecture can be reformulated in terms of spherical t-design, by the result of Venkov. In this paper, we show that τ(m) = 0 is equivalent to the fact that the homogeneous space of the moonshine vertex operator algebra (V{music natural sign})m+1 is a conformal 12-design. Therefore, Lehmer's conjecture is now reformulated in terms of conformal t-designs.

本文言語English
ページ(範囲)59-65
ページ数7
ジャーナルJournal of Algebra
374
DOI
出版ステータスPublished - 2013 1 15
外部発表はい

ASJC Scopus subject areas

  • Algebra and Number Theory

フィンガープリント 「Conformal designs and D.H. Lehmer's conjecture」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル