Consistency, population solidarity, and egalitarian solutions for TU-games

René van den Brink*, Youngsub Chun, Yukihiko Funaki, Boram Park

*この研究の対応する著者

研究成果: Article査読

22 被引用数 (Scopus)

抄録

A (point-valued) solution for cooperative games with transferable utility, or simply TU-games, assigns a payoff vector to every TU-game. In this paper we discuss two classes of equal surplus sharing solutions. The first class consists of all convex combinations of the equal division solution (which allocates the worth of the ‘grand coalition’ consisting of all players equally over all players) and the center-of-gravity of the imputation-set value (which first assigns every player its singleton worth and then allocates the remainder of the worth of the grand coalition, N, equally over all players). The second class is the dual class consisting of all convex combinations of the equal division solution and the egalitarian non-separable contribution value (which first assigns every player its contribution to the ‘grand coalition’ and then allocates the remainder equally over all players). We provide characterizations of the two classes of solutions using either population solidarity or a reduced game consistency in addition to other standard properties.

本文言語English
ページ(範囲)427-447
ページ数21
ジャーナルTheory and Decision
81
3
DOI
出版ステータスPublished - 2016 9 1

ASJC Scopus subject areas

  • 決定科学(全般)
  • 発達心理学および教育心理学
  • 人文科学(その他)
  • 応用心理学
  • 社会科学(全般)
  • 経済学、計量経済学および金融学(全般)
  • コンピュータ サイエンスの応用

フィンガープリント

「Consistency, population solidarity, and egalitarian solutions for TU-games」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル