Contact Conductivity of Uncapped Carbon Nanotubes Formed by Silicon Carbide Decomposition

Masafumi Inaba, Chih Yu Lee, Kazuma Suzuki, Megumi Shibuya, Miho Myodo, Yu Hirano, Wataru Norimatsu, Michiko Kusunoki, Hiroshi Kawarada*


研究成果: Article査読

2 被引用数 (Scopus)


Understanding of the contact conductivity of carbon nanotubes (CNTs) will contribute to the further application of CNTs for electronic devices, such as thin film transistors whose channel or electrode is made of dispersed CNTs. In this study, we estimated the contact conductivity of a CNT/CNT interface from the in-plane conductivity of an uncapped CNT forest on SiC. Investigation of the electrical properties of dense CNT forests is also important to enable their electrical application. The in-plane conductivity of a dense CNT forest on silicon carbide normalized by its thickness was measured to be 50 S/cm, which is two to three orders of magnitude lower than the conductivity of a CNT yarn. It was also found that both the CNT cap region and the CNT bulk region exhibit in-plane conductivity. The contact conductivity of CNTs was estimated from the in-plane conductivity in the bulk region. Dense and uncapped CNT forest can be approximated by a conductive mesh, in which each conductive branch corresponds to the CNT/CNT contact conductance. The evaluated contact conductivity was in good agreement with that calculated from the tunneling effect.

ジャーナルJournal of Physical Chemistry C
出版ステータスPublished - 2016 3月 24

ASJC Scopus subject areas

  • 電子材料、光学材料、および磁性材料
  • エネルギー(全般)
  • 物理化学および理論化学
  • 表面、皮膜および薄膜


「Contact Conductivity of Uncapped Carbon Nanotubes Formed by Silicon Carbide Decomposition」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。