Continuous linear extension of functions

A. Koyama, I. Stasyuk, E. D. Tymchatyn, A. Zagorodnyuk

研究成果: Article

2 引用 (Scopus)

抜粋

Let (X, d) be a complete metric space. We prove that there is a continuous, linear, regular extension operator from the space C*b of all partial, continuous, real-valued, bounded functions with closed, bounded domains in X to the space C*(X) of all continuous, bounded, real-valued functions on X with the topology of uniform convergence on compact sets. This is a variant of a result of Kunzi and Shapiro for continuous functions with compact, variable domains.

元の言語English
ページ(範囲)4149-4155
ページ数7
ジャーナルProceedings of the American Mathematical Society
138
発行部数11
DOI
出版物ステータスPublished - 2010 11 1

    フィンガープリント

ASJC Scopus subject areas

  • Mathematics(all)
  • Applied Mathematics

これを引用