Continuous speech recognition by context-dependent phonetic HMM and an efficient algorithm for finding N-Best sentence hypotheses

Katunobu Itou, Satoru Hayamizu, Hozumi Tanaka

研究成果

5 被引用数 (Scopus)

抄録

In this paper, a continuous speech recognition system, "niNja" (Natural language INterface in JApanese), is presented. Efficient search algorithms are proposed to get high accuracy and to reduce the required computations. First, an LR parsing algorithm with context-dependent phone models is proposed. Second, scores of the same phone models in different hypotheses at the phone-level are represented by the single score of the best hypothesis. The system is tested for the task with 113 word vocabulary, word perplexity 4.1. It produces sentence accuracy of 97.3% for the 10 open speakers's 110 sentences and the error reduction is as much as 77% comparing with the case using context independent phone models.

本文言語English
ホスト出版物のタイトルICASSP 1992 - 1992 International Conference on Acoustics, Speech, and Signal Processing
出版社Institute of Electrical and Electronics Engineers Inc.
ページ21-24
ページ数4
ISBN(電子版)0780305329
DOI
出版ステータスPublished - 1992
外部発表はい
イベント1992 International Conference on Acoustics, Speech, and Signal Processing, ICASSP 1992 - San Francisco, United States
継続期間: 1992 3 231992 3 26

出版物シリーズ

名前ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
1
ISSN(印刷版)1520-6149

Other

Other1992 International Conference on Acoustics, Speech, and Signal Processing, ICASSP 1992
国/地域United States
CitySan Francisco
Period92/3/2392/3/26

ASJC Scopus subject areas

  • ソフトウェア
  • 信号処理
  • 電子工学および電気工学

フィンガープリント

「Continuous speech recognition by context-dependent phonetic HMM and an efficient algorithm for finding N-Best sentence hypotheses」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル