Convergence Acceleration of Topology Optimization Based on Constrained Level Set Function Using Method of Moving Asymptotes in 3-D Nonlinear Magnetic Field System

Yoshifumi Okamoto*, Hiroshi Masuda, Yutaro Kanda, Reona Hoshino, Shinji Wakao

*この研究の対応する著者

研究成果: Article査読

13 被引用数 (Scopus)

抄録

Topology optimization (TO) has advantages over shape optimization; for example, the design space is wider and the degrees of the shape freedom is larger. The convergence characteristic in the conventional level set (LS) method is slow because of the limitation of the time step size that is used for solving the simplified Hamilton-Jacobi equation, which is normally defined as the width of one finite element in the design domain. To overcome this difficulty, convergence acceleration using the method of moving asymptotes is investigated. The performance of the proposed method is compared with the conventional LS method for a 3-D TO problem regarding the magnetic shielding and an interior permanent magnet motor in a 3-D nonlinear magnetostatic field.

本文言語English
論文番号7855785
ジャーナルIEEE Transactions on Magnetics
53
6
DOI
出版ステータスPublished - 2017 6月

ASJC Scopus subject areas

  • 電子材料、光学材料、および磁性材料
  • 電子工学および電気工学

フィンガープリント

「Convergence Acceleration of Topology Optimization Based on Constrained Level Set Function Using Method of Moving Asymptotes in 3-D Nonlinear Magnetic Field System」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル