Coronary arterial dynamics computation with medical-image-based time-dependent anatomical models and element-based zero-stress state estimates

Kenji Takizawa, Ryo Torii, Hirokazu Takagi, Tayfun E. Tezduyar, Xiao Y. Xu

研究成果: Article

29 引用 (Scopus)

抜粋

We propose a method for coronary arterial dynamics computation with medical-image-based time-dependent anatomical models. The objective is to improve the computational analysis of coronary arteries for better understanding of the links between the atherosclerosis development and mechanical stimuli such as endothelial wall shear stress and structural stress in the arterial wall. The method has two components. The first one is element-based zero-stress (ZS) state estimation, which is an alternative to prestress calculation. The second one is a “mixed ZS state” approach, where the ZS states for different elements in the structural mechanics mesh are estimated with reference configurations based on medical images coming from different instants within the cardiac cycle. We demonstrate the robustness of the method in a patient-specific coronary arterial dynamics computation where the motion of a thin strip along the arterial surface and two cut surfaces at the arterial ends is specified to match the motion extracted from the medical images.

元の言語English
ページ(範囲)1047-1053
ページ数7
ジャーナルComputational Mechanics
54
発行部数4
DOI
出版物ステータスPublished - 2014 10 1

ASJC Scopus subject areas

  • Computational Mechanics
  • Ocean Engineering
  • Mechanical Engineering
  • Computational Theory and Mathematics
  • Computational Mathematics
  • Applied Mathematics

フィンガープリント Coronary arterial dynamics computation with medical-image-based time-dependent anatomical models and element-based zero-stress state estimates' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用