TY - JOUR

T1 - Cosmology in generalized Horndeski theories with second-order equations of motion

AU - Kase, Ryotaro

AU - Tsujikawa, Shinji

PY - 2014/8/28

Y1 - 2014/8/28

N2 - We study the cosmology of an extended version of Horndeski theories with second-order equations of motion on the flat Friedmann-Lemaître-Robertson- Walker background. In addition to a dark energy field χ associated with the gravitational sector, we take into account multiple scalar fields φI (I=1,2,...,N-1) characterized by the Lagrangians P(I)(XI) with XI=∂μφI∂μφI. These additional scalar fields can model the perfect fluids of radiation and nonrelativistic matter. We derive propagation speeds of scalar and tensor perturbations as well as conditions for the absence of ghosts. The theories beyond Horndeski induce nontrivial modifications to all the propagation speeds of N scalar fields, but the modifications to those for the matter fields φI are generally suppressed relative to that for the dark energy field χ. We apply our results to the covariantized Galileon with an Einstein-Hilbert term in which partial derivatives of the Minkowski Galileon are replaced by covariant derivatives. Unlike the covariant Galileon with second-order equations of motion in general space-time, the scalar propagation speed square cs12 associated with the field χ becomes negative during the matter era for late-time tracking solutions, so the two Galileon theories can be clearly distinguished at the level of linear cosmological perturbations.

AB - We study the cosmology of an extended version of Horndeski theories with second-order equations of motion on the flat Friedmann-Lemaître-Robertson- Walker background. In addition to a dark energy field χ associated with the gravitational sector, we take into account multiple scalar fields φI (I=1,2,...,N-1) characterized by the Lagrangians P(I)(XI) with XI=∂μφI∂μφI. These additional scalar fields can model the perfect fluids of radiation and nonrelativistic matter. We derive propagation speeds of scalar and tensor perturbations as well as conditions for the absence of ghosts. The theories beyond Horndeski induce nontrivial modifications to all the propagation speeds of N scalar fields, but the modifications to those for the matter fields φI are generally suppressed relative to that for the dark energy field χ. We apply our results to the covariantized Galileon with an Einstein-Hilbert term in which partial derivatives of the Minkowski Galileon are replaced by covariant derivatives. Unlike the covariant Galileon with second-order equations of motion in general space-time, the scalar propagation speed square cs12 associated with the field χ becomes negative during the matter era for late-time tracking solutions, so the two Galileon theories can be clearly distinguished at the level of linear cosmological perturbations.

UR - http://www.scopus.com/inward/record.url?scp=84940314165&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84940314165&partnerID=8YFLogxK

U2 - 10.1103/PhysRevD.90.044073

DO - 10.1103/PhysRevD.90.044073

M3 - Article

AN - SCOPUS:84940314165

VL - 90

JO - Physical Review D - Particles, Fields, Gravitation and Cosmology

JF - Physical Review D - Particles, Fields, Gravitation and Cosmology

SN - 1550-7998

IS - 4

M1 - 044073

ER -