Crowdsourced verification for operating calving surveillance systems at an early stage

Yusuke Okimoto*, Soshi Kawata, Susumu Saito, Teppei Nakano, Tetsuji Ogawa

*この研究の対応する著者

研究成果: Conference contribution

抄録

This study attempts to use crowdsourcing to facilitate the operation of pattern-recognition-based video surveillance systems at an early stage. Target events (i.e. events to be detected during surveillance) are not frequently observed in recorded video, so achieving reliable surveillance on the basis of machine learning requires a sufficient amount of target data. Acquiring sufficient data is time-consuming. However, operating unreliable surveillance systems can induce many false alarms. Crowdsourcing is introduced to address this problem by verifying the unreliable results in data-driven surveillance. Experimental simulation conducted using monitoring video of Japanese black beef cattle demonstrates that crowdsourced verification successfully reduced false alarms in calving detection systems.

本文言語English
ホスト出版物のタイトルProceedings of ICPR 2020 - 25th International Conference on Pattern Recognition
出版社Institute of Electrical and Electronics Engineers Inc.
ページ4356-4362
ページ数7
ISBN(電子版)9781728188089
DOI
出版ステータスPublished - 2020
イベント25th International Conference on Pattern Recognition, ICPR 2020 - Virtual, Milan, Italy
継続期間: 2021 1 102021 1 15

出版物シリーズ

名前Proceedings - International Conference on Pattern Recognition
ISSN(印刷版)1051-4651

Conference

Conference25th International Conference on Pattern Recognition, ICPR 2020
国/地域Italy
CityVirtual, Milan
Period21/1/1021/1/15

ASJC Scopus subject areas

  • コンピュータ ビジョンおよびパターン認識

フィンガープリント

「Crowdsourced verification for operating calving surveillance systems at an early stage」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル